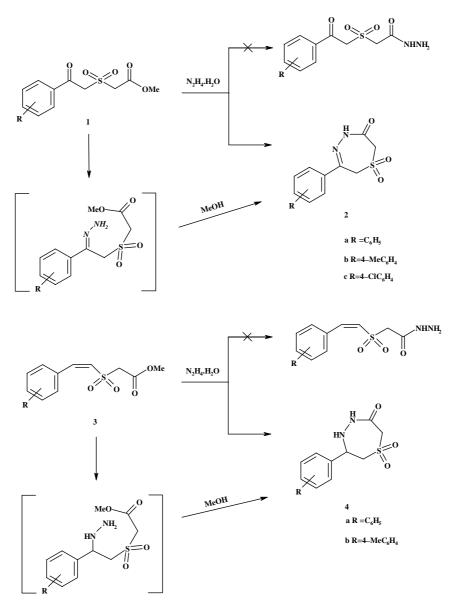
An unusual reaction of phenacylsulfonylacetic acid methyl ester and styrylsulfonylacetic acid methyl ester with hydrazine hydrate V. Padmavathi^{*}, P. Thriveni and A. Padmaja


Department of Chemistry, Sri Venkateswara University, Tirupati-517502, India

The reaction of phenacylsulfonylacetic acid methyl ester and styrylsulfonylacetic acid methyl ester with hydrazine hydrate gives unusual products, 1,1-dioxo-6-phenyl-1,2,4,7-tetrahydro-1 λ^{6} [1,4,5]thiadiazepin-3-one and 1,1-dioxo-6-phenyl-1 λ^{6} -[1,4,5]thiadiazepin-3-one instead of the expected acid hydrazide.

Keywords: phenacylsulfonylacetic acid methyl ester, styrylsulfonylacetic acid methyl ester, hydrazine hydrate, cycloaddition, cyclocondensation.

Nitrogen containing five membered heterocycles have considerable interest due to their wide range of pharmacological importance. In fact, pyrrole, pyrazole and isoxazole derivatives possess anti-inflammatory activity.¹ For the last one and half decades we have been actively involved in the synthesis of five membered heterocycles with two heteroatoms *viz.*, pyrazolines

and isoxazolines.² In addition, recently we have reported five membered heterocycles having three heteroatoms *viz.*, triazoles, oxadiazoles and thiadiazoles *via* a common route from phenylsulfonyl and benzylsulfonylacetic acids .³ Our successful results in these areas suggested further synthetic studies using phenacylsulfonylacetic acid and styrylsulfonylacetic acid.

* Correspondence.

When the methyl ester of phenacylsulfonylacetic acid (1) is made to react with hydrazine hydrate instead of the expected acid hydrazide, a cyclic product (2) is obtained (Scheme 1). The ¹H NMR spectrum of this compound showed signals at $\delta_{\rm H}$ 4.25 and 4.89 for C2–H and C7–H and a broad singlet at $\delta_{\rm H}$ 10.65 for NH which disappeared on deuteration. The IR spectrum of this compound displayed bands in the regions 1650 (C=O), 1321,1129 (SO₂), 1540 (C=N) and 3258 cm⁻¹ (NH). The ¹³C NMR spectrum of this compound showed signals at $\delta_{\rm C}$ 67.2, 166.3, 154.8 and 61.2 for C-2, C-3, C-6 and C-7. Based on this, the structure of the cyclic compound is predicted as 1, 1-dioxo-6-phenyl-1,2,4,7-tetrahydro-1 λ^6 -[1,4,5]thiadiazepin-3one (2a). Besides a molecular ion peak is observed at m/z 238, which is in agreement with its chemical composition. It seems that the initially formed hydrazone undergoes intramolecular cyclocondensation to 2a. In order to confirm the methodology, the reaction was repeated with 4-methyl and 4-chlorophenacylsulfonylacetic acids where 1,1-dioxo-6-p-tolyl-1,2,4,7tetrahydro- $1\lambda^6$ -[1,4,5]thiadiazepin-3-one (2b) and 1,1-dioxo-6-(4-chlorophenyl)-1,2,4,7-tetrahydro-1λ⁶-[1,4,5]thiadiazepin-3one (2c) were obtained. The structures of these compounds are confirmed by spectral parameters.

Similarly, when the methyl ester of styrylsulfonylacetic acid (3) is condensed with hydrazine hydrate, a cyclic adduct 1, 1-dioxo-6-phenyl $-1\lambda^{6}$ -[1,4,5]thiadiazepan-3-one (4a) is obtained. The ¹H NMR spectra of this compound displayed a singlet and two multiplets at $\delta_{\rm H}$ 4.35, 4.17–4.22 and 3.84-3.89 for C₂–H, C₆–H and C₇–H, respectively. A broad singlet was observed at $\delta_{\rm H}$ 10.58 for NH which disappeared on deuteration. The ¹³C NMR spectrum of this compound displayed signals at δ_C 60.6, 165.7, 58.9 and 66.8 for C-2, C-3, C-6 and C-7. The mass spectrum of 4a showed M⁺ peak at m/z 240, which confirms its chemical composition. In this reaction also it is presumed that the initially formed Michael addition product undergoes intramolecular cyclocondensation to 4a. When the same reaction is repeated with 4-methylstyrylsulfonylacetic acid, 1,1-dioxo-6-p-tolyl-1 λ^6 -[1,4,5] thiadiazepan-3-one (4b) is obtained whose structure is confirmed by spectral parameters.

Experimental

The purity of the compounds was checked by thin layer chromatography over silica gel [Silica gel-G, hexane-ethyl acetate (3:1)]. IR spectra were run as KBr pellets using Perkin-Elmer 993 infrared spectrometer and NMR spectra were recorded in CDCl₃-DMSO using a 300 MHz Perkin-Elmer Instrument. The mass spectra were recorded on a krates MS-80 double focusing mass spectrometer. The starting substrates, phenacylsulfonylacetic acid methyl ester⁵ and styrylsulfonylacetic acid methyl ester⁶ were prepared by standard procedures.

General procedure for the synthesis of 1, 1-dioxo-6-aryl-1, 2, 4, 7tetrahydro- $1\lambda^6$ -[1, 4, 5]thiadiazepin-3-one (2a–c): A mixture of 1 (0.2 mmol), hydrazine hydrate (0.4 mmol) and methanol (15 ml) was refluxed for 10 h. It was cooled and the solid separated was filtered, dried and recrystallised from methanol.

 $l, l\text{-Dioxo-6-phenyl-l}, 2, 4, 7-tetrahydro-lλ^6-[l, 4, 5]thiadiazepin-3-one (2a): Yield 64%, m.p. 301–303 <math display="inline">^0$ C (Found: C, 50.50; H, 4.27; N, 11.82. Calc. for C₁₀H₁₀N₂O₃S: C, 50.41; H, 4.23; N, 11.76 %). ν_{max}/cm⁻¹1129, 1321(SO₂); 1540 (C=N); 1650 (C=O); 3258 (NH). δ_H (DMSO) 4.25 (s, 2H, C₂–H), 4.89 (s, 2H, C₇–H), 7.22–7.63 (m, 5H, aromatic H); 10.65 (bs, 1H, NH). δ_c 67.2 (C-2), 166.3 (C-3), 154.8 (C-6), 61.2 (C-7).

l, *l*-Dioxo-6-p-tolyl-1, 2, 4, 7-tetrahydro-1λ⁶-[1, 4, 5]thiadiazepin-3-one (**2b**): Yield 62%, m.p. 293–295 ⁰C (Found: C, 52.46; H, 4.85; N, 11.20. Calc. for C₁₁H₁₂N₂O₃S: C, 52.37; H, 4.79; N, 11.10 %). v_{max} /cm⁻¹ 1141,1294 (SO₂); 1535 (C=N); 1648 (C=O); 3200 (NH). $\delta_{\rm H}$ (DMSO) 2.36 (s, 3H, Ar–CH₃), 4.28 (s, 2H, C₂–H), 4.86 (s, 2H, C₇–H), 6.98-7.60 (m, 4H, aromatic H), 10.68 (bs, 1H, NH). $\delta_{\rm c}$ 64.5 (C-2), 164.2 (C-3), 152.4 (C-6), 59.2 (C-7).

1,1-Dioxo-6-(4-chlorophenyl)–1,2,4,7-tetrahydro-1λ⁶-[1,4,5] thiadiazepin-3-one (2c): Yield 66%, m.p. 304–307°C (Found: C, 44.12; H, 3.31; N, 10.35. Calc. for C₁₀H₉ClN₂O₃S: C, 44.04; H, 3.33; N, 10.27 %). v_{max} /cm⁻¹ 1124, 1296 (SO₂), 1538 (C=N), 1635 (C=O), 3320 (NH). $\delta_{\rm H}$ (DMSO) 4.29 (s, 2H, C₂–H), 4.94 (s, 2H, C₇–H), 7.52–7.94 (m, 4H, aromatic H), 10.88 (bs, 1H, NH). $\delta_{\rm c}$ 68.5(C-2), 168.4 (C-3), 155.6 (C-6), 63.1 (C-7).

General procedure for the synthesis of l, l-dioxo-6-aryl- $l\lambda^{6}$ -[l, 4, 5]thiadiazepan-3-one (**4a** & **4b**): A mixture of **3** (0.25 mmol) and hydrazine hydrate (0.5 mmol) in methanol (15 ml) was refluxed for 10 h. It was cooled and the solid separated was filtered and dried.

l, *l*-Dioxo-6-phenyl-1λ⁶-[*l*, 4, 5]thiadiazepan-3-one (**4a**): Yield 76%, m.p. 210–212 ⁰C. (Found: C, 50.08; H, 5.08; N, 11.60. Calc. for C₁₀H₁₂N₂O₃S: C, 49.99; H, 5.03; N, 11.66 %). v_{max} /cm⁻¹ 1129,1322 (SO₂); 1638 (C=O); 3304 (NH). $\delta_{\rm H}$ (DMSO) 3.84–3.89 (m, 2H, C₇–H), 4.17–4.22 (m, 1H, C₆–H), 4.35 (s, 2H, C₂–H), 10.58 (bs, 2H, NH). $\delta_{\rm c}$ 60.6 (C-2), 165.7 (C-3), 58.9 (C-6), 66.8 (C-7).

1,1-Dioxo-6-p-tolyl-1λ⁶-[1,4,5] thiadiazepan-3-one (**4b**): Yield 79% , m.p. 225–227 ⁰C. (Found: C, 51.83; H, 5.52; N, 12.00. Calc. for C₁₁H₁₄N₂O₃S: C, 51.95; H, 5.55; N, 11.02 %). v_{max} /cm⁻¹ 1125, 1320 (SO₂); 1640 (C=O); 3310 (NH). δ_{H} (DMSO) 2.34 (s, 3H, Ar–CH₃), 3.71–3.75 (m, 2H, C₇–H), 4.15–4.19 (m, 1H, C₆–H), 4.32 (s, 2H, C₂–H), 10.52 (bs, 2H, NH). δ_{c} 58.7 (C-2), 164.6 (C-3), 56.5 (C-6), 64.2 (C-7).

Received 23 April 2004; accepted 18 June 2004 Paper 04/2485

References

- 1 G. Dannhard, W. Kiefer, G. Kramer and S. Maehrlein, Eur J. Med. Chem., 2000, 35, 499.
- 2 V. Padmavathi, R.P. Sumathi, N. Chandrasekhar Babu and D. Bhaskar Reddy, *J. Chem. Res.* (*S*), 1999, 610; V. Padmavathi, K. Venugopal Reddy, A. Balaiah, T.V. Ramana Reddy and D. Bhaskar Reddy, *Heteroatom Chem.*, 2002, **13**, 677 and references therein.
- 3 V. Padmavathi, P. Thriveni, B. Jagan Mohan Reddy and A. Padmaja, *J. Heterocycl. Chem.*, (submitted).
- 4 I. Sataty, Tetrahedron, 1972, 28, 2307.
- 5 D. Bhaskar Reddy, M. Muralidhar Reddy and P.V. Ramana Reddy, *Ind. J. Chem.*, 1993, **32B**, 1018.
- 6 D. Bhaskar Reddy, M. Muralidhar Reddy and G.V. Subbaraju, Ind. J. Chem., 1995, 34B, 816.